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Abstract

The homogeneous asymmetric hydrogenation reactions of fluorinated b-keto esters using ruthenium(II) complexes bearing
atropoisomeric diphosphines such as BINAP and MeO�BIPHEP have yielded the corresponding b-hydroxy esters in quantitative
yield with ee that ranged between 42 and \95%. © 2000 Published by Elsevier Science S.A. All rights reserved.
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In recent years, increased attention in the chemical
synthesis of fluorinated compounds has occurred [1], and
a large number of fluorinated drugs have been synthe-
sized. Examples include trifluorocitronellol (1) [2] pre-
pared recently by Seebach et al. chiral difluorinated
gingerol (2) [3] and (1%R,3R,4R)-4-acetoxy-3-(2%,2%,2%-tri-
fluoro-1%-hydroxyethyl)-azetidin-2-one (3) [4], a key in-
termediate in the synthesis of fluorocarbapenems (Fig. 1).

Fluorinated b-hydroxy esters are an important class
of compounds which serve as chiral building blocks for
the synthesis of aminoacids [5], epoxides [6], diols [7]
and carbohydrates [8]. However, in the literature there
are not many reports available on the synthesis of
chiral fluorinated b-hydroxy esters. Enzymatic reduc-
tion of ethyl 4,4,4-trifluoro-3-oxobutanoate was re-

ported with an ee of 45% [9] by Seebach et al. about a
decade ago. The enantioselective Reformatsky reaction
of methyl bromodifluoroacetate has been described,
with the formation of methyl (S)-2,2-difluoro-3-hy-
droxy-3-phenylpropanoate in 84% ee [10]. a,a-Difluoro-
b-hydroxy esters were obtained more recently by aldol
reactions of various aldehydes with a,a-difluoroketene
silyl acetal mediated by Lewis acids with ees up to 98%
[11]. To the best of our knowledge, only an example of
a ruthenium-promoted hydrogenation reaction of
fluorinated b-keto ester has been reported by Noyori
and his coworkers on ethyl 4,4,4-trifluoro-3-oxobu-
tanoate using RuHCl[(R)-BINAP]2 at 80 bar pressure
and 30°C. The corresponding b-hydroxy ester was iso-
lated in 95% yield with 46% ee. [12]. As part of our
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Scheme 1.

continuing interest in the homogeneous ruthenium-pro-
moted hydrogenation reactions [13,14], we herein re-
port the asymmetric hydrogenation of fluorinated
b-keto esters using the in situ generated chiral ruthe-
nium catalysts. The ruthenium-catalysts were prepared
in situ from (R)-BINAP or (R)-MeO�BIPHEP and
(COD)Ru(h3-(CH2)2CCH3)2 by addition of methanolic
HBr at room temperature [13] (Scheme 1).

The screening tests were carried out on a 1 mmol
scale in methanol or ethanol under 20 bar of hydrogen
pressure at 99°C using the in situ generated ruthenium
dibromide catalysts. Catalytic activity in the hydro-
genation of fluorinated b-keto esters was excellent. In
all cases, complete conversions were achieved (Scheme
2).

Hydrogenation of ethyl 4,4,4-trifluoro-3-oxobu-
tanoate (4) was carried out using both enantiomers of
MeO�BIPHEP leading to (S)-9 and (R)-9 with 42% ee
(entries 1 and 2). For the hydrogenation of ethyl
5,5,5,4,4,-pentafluoro-3-oxopentanoate (5), promoted
by the in situ generated ruthenium complexes, both
ruthenium�BINAP and MeO�BIPHEP complexes leadScheme 2.

Table 1

Substrate Ligands Conditions a (Configuration)/eeEntry

(S)-9/42% b20 bar, 99°C, 1 h1 (R)-MeO�BIPHEP
(S)-MeO�BIPHEP 20 bar, 99°C, 1 h2 (R)-9/42% b

(R)-BINAP 20 bar, 99°C, 18 h3 (S)-10/48% b

(R)-MeO�BIPHEP 20 bar, 99°C, 20 h4 (S)-10/61% b

(R)-BINAP 20 bar, 99°C, 24 h5 (R)-11/\95% c

(R)-11\95% c20 bar, 99°C, 24 h6 (R)-MeO�BIPHEP

20 bar, 99°C, 18 h (R)-12/\95% b(R)-BINAP7
(R)-MeO�BIPHEP 20 bar, 99°C, 20 h (R)-12/\95% b8

20 bar, 99°C, 18 h (S)-13/88% b(R)-BINAP9
20 bar, 99°C, 20 h (S)-13/86% b10 (R)-MeO�BIPHEP

a Reactions times are not optimized.
b The enantiomeric excesses were measured by gas chromatography using a lipodex A column (Macherey–nagel).
c Determined by 1H-NMR spectroscopy of the corresponding (R)-methoxy(trifluoromethyl)phenylacetyl (MTPA) ester.
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to the formation of fluorinated b-hydroxy ester (10) in
moderate enantioselectivities (48 and 61%, entries 3 and
4). On the other hand, the same atropoisomeric ligands
promoted highly enantioselective hydrogenations of the
methyl 5-perfluorooctyl-3-oxopentanoate (6) (entries 5
and 6) under the same reaction conditions affording
fluorinated alcohol 11 as the only detectable product
with enantiomeric excesses higher than 95% (deter-
mined by 1H-NMR spectroscopy of the corresponding
(R)-methoxy(trifluoromethyl)phenylacetyl (MTPA) es-
ter (Table 1).

The same conditions were applied to methyl-2,2-di-
fluoro-3-oxopentanoate (7) (entries 7 and 8) and the
corresponding a,a-difluoro-b-hydroxy ester (12) was
obtained quantitatively with excellent ee (\95% ee).
Finally, we examined the hydrogenation of ethyl 3-oxo-
3-(2,3,5-trifluoro)phenyl propanoate (8) (entries 9 and
10) which proceeded in good enantioselectivities afford-
ing 13 (88 and 86% ee). The absolute configurations of
the hydrogenated derivative 9 has been established by
comparison with literature data. Consequently, we as-
sumed that the other hydrogenation reactions follow
the same stereochemical course as this was described
with the BINAP and atroposisomeric ligands Ru-medi-
ated hydrogenation of b-keto esters [15].

In conclusion, a practical synthesis of several fluori-
nated b-hydroxy esters [16] has been described with
significant levels of enantioselectivities. Applications to
the synthesis of fluorinated biologically active molecules
are under investigation.
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